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Recap from last lecture

• Descriptive statistics (numerical summaries)
• Boxplot
• Connecting boxplot and histogram (where is the mean/median

roughly, what about skewedness?)
• IQR (and other inter quantile range)
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Descriptive statistics

• to learn data distribution
• attributes for features of a distribution

• central tendency
• dispersion/spread
• symmetry/skewedness
• shape of tails
• modality
• other anomalies such as missing values and outliers

• a quick way to visualize data distribution with just five numbers
• maximum
• 3rd quartile (75% percentile)
• median (50% percentile)
• 1st quartile (25% percentile)
• minimum
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Boxplot

Boxplot provides a visualization of how data behave using the five
descriptive statistics.
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• the width of the box gives the
IQR (50% of the data)

• the length of the whiskers is
1.5 IQR
• all observations outside of the
±2IQR range (from median)
are shown as dots

• outliers are defined by values
less than Q1− 1.5IQR or
greater than Q3 + 1.5IQR
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Boxplot and Histogram
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• boxplot gives a better
visual for spread and
identifying outliers

• histogram shows the
overall shape and tail
better

• both can be used to
identify
symmetry/asymmetry
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Boxplot and Histogram
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IQR

• Inter-quartile range is a special case of an inter 50% quantile distance.
Let

xp = {x : FX (x) = p}

and
x1−p = {x : FX (x) = 1− p}

for 0 < p < 0.5
• Then the inter 1− 2p quantile distance is simply x1−p − xp.
• When p = 0.25, we recover the IQR Q3 − Q1 = x0.75 − x0.25.
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IQR and standard deviation

Since both are measures of spread, they are closely related quantities. But
for a normal random variable, the relationship is deterministic due to

FX (x) = 1
2

[
1 + err(x − µ

σ
)
]

• In the case of a symmetric normal distribution with mean centered at
µ = 0, FX (x) reduces to a function of σ alone.

• Note that err function has an analytical form involving integration
without a closed-form representation, so the relationship is usually
approximated.

• You can then determine the approximated relationship between σ and
IQR or more generally inter 1− 2p quantile distance for any arbitrary
0 < p < 0.5.
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Topics covered in this lecture

• Sampling
• Concept of a random sample
• Mean of random variables from a random sample
• Sampling distribution of the mean of random variables
• Sampling from a normal distribution

• Parameters
• Finding estimators for a parameter

• Method of moments estimators
• Maximum likelihood estimators

• Evaluating estimators
• Consistency
• Unbiasedness
• Robustness
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Concept of a random sample
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A formal definition of random sample

A collection of random variables (r.v.) X1, . . . ,Xn are a random sample of
size n from the population if X1, . . . ,Xn

• are mutually independent
• have the same distribution (either p.d.f or p.m.f)

You can also say a random sample of r.v.s X1, . . . ,Xn are independent and
identically distributed (iid in short) with probability function fX (x).

fX(x1, . . . , xn) = fX (x1) · · · fX (xn) = Πn
i=1fX (xi )
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what about a random sample from a known parametric
family?

• Suppose the random sample comes from a known parametric family
with unknown parameter θ (could either be a real value or a vector),
e.g.
• normal distribution θ = (µ, σ)
• t-distribution θ = k, the degrees of freedom
• binomial or Bernoulli distribution θ = p, the probability of a positive

outcome

• By considering different values of θ, we can observe how a random
sample behave for different populations.

fX(x1, . . . , xn|θ) = Πn
i=1fX (xi |θ)
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How to obtain a random sample?

To obtain a truly random sample (x1, . . . , xn), we have to sample from an
infinite population (x1, . . . , xN , . . . )
For a finite population (e.g. (x1, . . . , xN), where n < N <∞), we need to
sample with replacement
• after each draw, the same value is replaced in the population
• this way, each xi (i = 1, . . . , n) has exactly probability 1

N of being
drawn

• we must have P(X2 = y |X1 = y) = 1
N = P(X2 = y)

• and P(X2 = y ′|X1 = y) = 1
N

• the probability of drawing a sample is 1
Nn
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How to obtain a random sample? (cont’d)

On the other hand, sampling without replacement refers to the drawing
process
• where after each value is taken, the choice of this particular value

becomes unavailable for the next draws.
• we must have P(X2 = y |X1 = y) = 0 6= P(X2 = y) = 1

N
• and P(X2 = y ′|X1 = y) = 1

N−1 where (y 6= y ′)
• it is clear the probability of drawing a sample is 1

N
1

N−1 . . .
1

N−n+1
• a sample resulted from sampling without replacement thus does not
satisfy the condition of being a random sample (especially if n < N
and not n << N)

However, notice the marginal distribution fXi (x) of Xi from sampling with
replacement (gives a random sample) and sampling without replacement
(does not result in a random sample) is the same for i = 1, . . . , n.
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An example

Suppose we take a random sample of 10 values from the finite population
{1, . . . , 1000} with replacement, what is the probability that all sample
values are greater than 200?
In this case the samples are mutually independent and we can calculate
the exact probability to be:

P(X1 > 200, . . . ,X10 > 200) = Π10
i=1P(Xi > 200) =

( 800
1000

)10
∼ 0.107
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An example (cont’d)

Suppose we take a random sample of 10 values from the finite population
{1, . . . , 1000} without replacement, what is the probability that all
sample values are greater than 200?
In this case the samples are not mutually independent, but this can be
translated to a problem of counting the number of samples greater than
200.
Let Y be the number of samples greater than 200, and it has a
hypergeometric distribution1:

P(X1 > 200, . . . ,X10 > 200) = P(Y = 10) =
(800
10
)(200

0
)(1000

10
) = 0.106

1probability of k = 10 successes (random draws for which the object drawn has a
specified feature, being greater than 200) in n = 10 draws, without replacement, from
a finite population of size N = 1000 that contains exactly K = 800 objects with that
feature, wherein each draw is either a success or a failure.
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reflection

• Suppose the finite population is {1, . . . , 100}, repeat the calculation
but finding the probability of all sample values greater than 20. Are
the two probabilities different?

• Suppose the finite population remains the same {1, . . . , 1000}, but
we are taking 100 samples, repeat the calculation for all sample values
greater than 200 . Are the two probabilities different now?

• What do you conclude from these calculations?
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Mean of random variables from a random sample



19/57

A formal definition of a statistic

Given a sample X1, . . . ,Xn, a well-defined statistic is expressed as a
function of the sample T (X1, . . . ,Xn).
• The function T can be real-valued or a vector
• The statistic itself is a random variable Y = T (X1, . . . ,Xn)
• In some cases, the distribution of Y is tractable

The distribution of Y is derived from the distribution of a sample
X1, . . . ,Xn and thus also called the sampling distribution of Y .
Generally speaking, the definition of a statistic can be almost anything,
but it cannot be a function of the (unknown or known) parameter θ.
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Sample mean of random variables

Let X1, . . . ,Xn be a random sample from a population with mean µ and
variance σ2 <∞. Define T (X1, . . . ,Xn) = X̄ = 1

n
∑n

i=1 Xi and
T (X1, . . . ,Xn) = S2 = 1

n−1

[∑n
i=1 X 2

i − nX̄ 2
]
. Show

1. E(X̄ ) = µ

2. Var(X̄ ) = σ2

n
3. E(S2) = σ2

Try to work these out.
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Proof of a)

E(X̄ ) = E(1n

n∑
i=1

Xi ) (1)

= 1
nE(

n∑
i=1

Xi ) (2)

= 1
n

n∑
i=1

E(Xi ) (3)

= 1
nnE(Xi ) (4)

= µ (5)
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Proof of b)

Var(X̄ ) = Var(1n

n∑
i=1

Xi ) (6)

= 1
n2Var(

n∑
i=1

Xi ) (7)

= 1
n2

n∑
i=1

Var(Xi ) (8)

= 1
nVar(Xi ) (9)

= σ2

n (10)
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Before c), remember the following from STA247

Here we used the following relationship between the mean and variance:

Var(Xi ) = E[(Xi − µ)2] = E[X 2
i − 2µXi + µ2] = E(X 2

i )− µ2

similarly
Var(X̄ ) = E(X̄ 2)− E (X̄ )2 = E(X̄ 2)− µ2
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Proof of c)

E(S2) = E
( 1

n − 1

[ n∑
i=1

X 2
i − nX̄ 2

])
(11)

= 1
n − 1E

[ n∑
i=1

X 2
i − nX̄ 2

]
(12)

= 1
n − 1

[
nE(X 2

i )− nE(X̄ 2)
]

(13)

= n
n − 1

[
E(X 2

i )− E(X̄ 2)
]

(14)

= n
n − 1

[
Var(Xi ) + E(Xi )2 − Var(X̄ )− E (X̄ )2

]
(15)

= n
n − 1

[
σ2 + µ2 − σ2

n − µ
2
]

(16)

= n
n − 1

[
σ2 − σ2

n

]
(17)

= σ2 (18)
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Sampling distribution of the mean of random
variables
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Sampling distribution of the mean of random variables

Let X1, . . . ,Xn be iid random variables with E(Xi ) = µ and
Var(Xi ) = σ2 <∞. Define X̄n = 1

n
∑n

i=1 Xi . Then for every ε > 0,
• Strong law of large number (SLLN):

P( lim
n→∞

|X̄n − µ| < ε) = 1

• Weak law of large number (WLLN):

lim
n→∞

P(|X̄n − µ| < ε) = 1

• Central limit theorem (CLT):
as n→∞,

√
n(X̄n − µ) d−→ N(0, σ2)
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What you need to know

A rigourious treatment of the theory to derive the sampling distribution of
X̄ is beyond the scope of this course. But you should be able to use the
above to justiy yourself in practice.
• SLLN is a stronger result than WLLN; SLLN implies WLLN, but not
vice versa.
• SLLN says that with large enough n, the sample mean of random
variables with finite variance (can be relaxed to finite expectation)
converges almost surely (with probability 1) to a constant (or µ).

• WLLN says that with large enough n, the probability of the sample
mean of random variables with finite variance being really close to a
constant (or µ) converges to 1.

• CLT states that with large enough n, the distribution of sample mean
of random variables with finite variance is approximately normal.
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An example
A random sample from Poi(λ = 5), with sample size at n = 100, 1000, and
10000.

100 1000 10000

4.0 4.5 5.0 5.5 6.0 4.0 4.5 5.0 5.5 6.0 4.0 4.5 5.0 5.5 6.0
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Central limit theorem (how big should n be?)

2
2OpenIntro, page 195
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Sampling from a normal distribution
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Some theoretical results

Let X1, . . . ,Xn be a random sample from N (µ, σ2). Define two statistics
X̄ = 1

n
∑n

i=1 Xi and S2 = 1
n−1

[∑n
i=1 X 2

i − nX̄ 2
]
. Show that

1. X̄ and S2 are independent (not tested)
2. X̄ ∼ N (µ, σ

2

n )
3. (n − 1)S2/σ2 has a chi-squared distribution with n − 1 degrees of

freedom (χ2(n − 1)) (not tested)
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Sketch Proof of a).

The proof can be completed in three steps,
1. show that S2 can be expressed as a function only of

(X2 − X̄ , . . . ,Xn − X̄ )
2. show that X̄ is independent of (X2 − X̄ , . . . ,Xn − X̄ ) by writing out

the joint p.d.f as a product of the joint p.d.f of (X2 − X̄ , . . . ,Xn − X̄ )
and p.d.f of X̄ .

3. conclude from the fact that if two random variables are independent,
then so are any measurable functions of them.

You only need to be able to show 1), but you should be able to show 2)
from STA247 (remember how to do change of variables). 3) is beyond the
scope of this course.
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Proof of a) Step 1)

Hint:
n∑

i=1
(Xi − X̄ ) = 0

and expressed

S2 = 1
n − 1

[ n∑
i=1

X 2
i − nX̄ 2

]
(19)

= 1
n − 1

[ n∑
i=1

(Xi − X̄ )2
]

(20)

as a sum of two things.
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Proof of b).

Calculate the moment generating function (STA247) of X̄ and compare
with the m.g.f of a normal random variable to conclude it is indeed normal
with mean µ and variance σ2

n .
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Proof of b). (Cont’d)

Recall definition of a moment generating function:

MX̄ (t) = E(etX̄ ) (21)

= E(et 1
n

∑n
i=1

Xi ) (22)

= E(Πn
i=1et 1

n Xi ) (23)

= Πn
i=1E(et 1

n Xi ) (24)

= Πn
i=1(etµ/n+1/(2)σ2(t/n)2) (25)

= (etµ/n+1/(2)σ2(t/n)2)n (26)

= etµ+1/(2n)σ2t2 (27)
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Proof of c).

(n − 1)S2/σ2 =
n∑

i=1
(Xi − X̄ )2/σ2 (28)

=
n∑

i=1
(Xi − µ)2/σ2 − n(X̄ − µ)2/σ2 (29)

• Given that the Xi−µ
σ ∼ N (0, 1), we can show by m.g.f or a direct

change of variable that
(

Xi−µ
σ

)2
∼ χ2(1) (this applies to

n(X̄ − µ)2/σ2 as well)
• And the fact that the sum of independent chi-squared random
variables still follow a chi-squared distribution with d.f. to be the sum
of individual d.f’s. We have

∑n
i=1(Xi − µ)2/σ2 ∼ χ2(n)

• Combining the two, we have the result (n − 1)S2/σ2 ∼ χ2(n − 1)
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An example

• From b) of the theorem above, we know that

X̄ − µ
σ/
√

n
∼ N (0, 1)

• But what about when the variance is unknown?

X̄ − µ
S/
√

n



38/57

An example (cont’d)

Deriving the sampling distribution of T = X̄−µ
S/
√

n .

• We first construct this statistic to be a ratio of two statistics:
X̄−µ
S/
√

n = (X̄−µ)(σ/
√

n)√
S2/n2

• Notice the top one follows standard normal and the bottom is√
χ2n−1/(n − 1).

• As we have shown in a) that these two are independent, we can thus
derive the distribution by looking at the joint distribution of the two
components.

• The result you need to know is that X̄−µ
S/
√

n follows a student’s
t-distribution with degrees of freedom k = n − 1, or T ∼ tk

fT (t|k) =
Γ
(

k+1
2

)
Γ
(

k
2

) 1
(kπ)1/2

1
(1 + t2/k) k+1

2
, −∞ < t <∞
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Finding estimators for a parameter

• Method of moments
• Maximum likelihood (principles of data reduction)
• Bayes estimators (will not be on the test)
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What is an estimator and an estimate?

• Recall that a statistic is defined as T (X1, . . . ,Xn)
• An “estimator” or “point estimator” is a statistic used to infer the
value of an unknown parameter (so it is always used in reference to a
parameter)

• Notation: θ̂n = θ̂(X) = T (X1, . . . ,Xn).
• For example, X̄ is an estimator of µ.
• An “estimate” is simply the realized value of the estimator, i.e. the

estimator (or statistic) evaluated at the actual sample values
(x1, . . . , xn).
• Notation: θ̂(x) = t(x1, . . . , xn).
• For example, x̄ is an estimate of µ.
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How do we find estimators?

• In many cases the choice is intuitive, for example, sample mean is a
reasonable estimate of the population mean.

• In situation when it’s less clear, we need more principled approaches
to find estimators.

• Remember, the estimates contain information about the sample while
the parameters contain information about the population.

• We need to bridge these two using rigorious statistical methods.
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Method of moments

Let X1, . . . ,Xn be an iid sample from a population with some probability
function (p.d.f or p.m.f). Then we can compute the first k sample
moments and equate them to each of the first k population moments to
find estimators:

m1 = 1
n

n∑
i=1

Xi ; µ1(θ) = E (X )

...

mk = 1
n

n∑
i=1

X k
i ; µk(θ) = E (X k)

The estimators are found by solving these equations simultaneously.
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An example of a normal random sample

Suppose an iid sample X1, . . . ,Xn ∼ N (µ, σ2), we know the first two
sample moments

m1 = X̄

and

m2 = 1
n

n∑
i=1

X 2
i

while the population moments

E (X ) = µ

and
E (X 2) = σ2 + µ2

Thus, the method of moments estimators are µ̂ = X̄ and
σ̂2 = 1

n
∑n

i=1 X 2
i − X̄ 2 = 1

n
∑n

i=1(Xi − X̄ )2.
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Method of moments (pro and cons)

• probably the oldest method to find estimator (credit to Karl Pearson
in late 1800s)

• simple to implement and always yield some estimate
• estimators might not be plausible
• a good starting point
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Likelihood

Let X1, . . . ,Xn be an iid sample from a population with some probability
function (p.d.f or p.m.f). Define the likelihood function (a function of the
parameter)

L(θ|x) = L(θ1, . . . , θk |x1, . . . , xn) = Πn
i=1f (xi |θ)

• Observe the symmetry between L(θ|x) and f (x|θ).
• The likelihood is a function of the parameter given the data (x)
• The probability is a function of the data given the parameter (θ)
• You can vary the values of θ such that the observed sample is most
likely.
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Maximum likelihood

Define the maximum likelihood estimator (MLE) θ̂ to be:

θ̂(X) = argmaxθL(θ|X)

• If L(θ|X) has a global maximum, then there is a unique θ̂.
• Suppose L(θ|X) is differentiable with respect to θ, we can find MLE

by solving
∂

∂θi
L(θ|x) = 0; i = 1, . . . , k

• Then you should verify the solutions are indeed the only extreme
point in the interior range of θ by checking the second derivative.

• If θ is restricted to a range, you should also check the boundary
points.



47/57

An example of a normal random sample

Let X1, . . . ,Xn ∼ N (µ, σ2) be iid. The likelihood is then

L(µ, σ2|x) = Πn
i=1

1√
2πσ

e−
(xi −µ)2

2σ2 (30)

= 1
(
√
2πσ)n

e−
∑n

i=1
(xi −µ)2

2σ2 (31)

∂

∂µ
L(µ, σ2|x) = 2

n∑
i=1

(xi − µ)
2σ2 = 0

implies that

µ̂ = 1
n

n∑
i=1

xi = x̄
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An example of a normal random sample (cont’d)

On the other hand,

∂

∂σ2
L(µ, σ2|x) = − n

2σ2 +
∑n

i=1 (xi − µ)2

2σ4 = 0

and plugging in µ̂ we have

σ̂2 =
∑n

i=1 (xi − x̄)
n = n − 1

n S2

Check for yourself that the two second partial derivatives are negative.
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A visual of the MLE (R)
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A visual of the MLE (Python)
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Evaluating estimators

• Unbiasedness
• Sufficiency
• Consistency
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Unbiasedness

An estimator θ̂ is unbiased for the parameter θ if

Ex |θ(θ̂) = θ

otherwise the difference between the two

Ex |θ(θ̂)− θ

is called the bias of θ̂ relative to θ.
Examples of unbiased statistics:
• X̄ is an unbiased estimator of µ
• S2 (defined earlier with 1/(n − 1)) is an unbiased estimator of σ2

(Exercise: show the above).
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A common used measure of quality: Mean squared error

MSE of an estimator θ̂ of a parameter θ is a function of θ:

EX |θ(θ̂ − θ)2 = VarX |θ(θ̂) + (EX |θ θ̂ − θ)2 = VarX |θ(θ̂) + (Bias)2

• both variability of the estimator (precision) and the bias (accuracy)
play a role in the mean squared error

• analytically tractable
• A good estimator should have both small - clearly unbiased estimator
has some advantage in terms of accuracy.
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Exercise

For iid X1, . . . ,Xn ∼ N (µ, σ2), find the MSE of the unbiased estimator X̄
and S2.
Know how to get to these results:

E(X̄ − µ)2 = σ2

n
and

E(S2 − σ2)2 = 2σ4
n − 1
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Sufficiency

A statistic T (X) is sufficient for θ if the conditional probability distribution
of X does not depend on θ given knowledge of T (X).
• The idea of sufficiency arise from the idea that the statistic contains

all information about θ in this sample
• Factorization theorem: Given the probability function is fX |θ(x), T (X )

is sufficient for θ if and only if there exists non-negative functions g
and h such that

fX |θ(x) = h(x)gθ(T (x))

• You should be able to show for the normal case with known variance
parameter σ2, X̄ is sufficient for µ.
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Consistency

Consider the estimators θ̂n, consistency refers to the property concerning
when n→∞.
A sequence of estimators θ̂n is consistent for parameter θ, if for every ε > 0

lim
n→∞

P(|θ̂n − θ| < ε) = 1.

• Consistency means that as sample size approaches infinity, the
estimator eventually will be close to the parameter with high
probability (not probability 1, so this is weak - as in the WLLN).

• This is different from the previous properties that were restricted to
finite samples
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Connection between consistency and unbiasedness

Chebyshev’s inequality (STA247):

P(|θ̂n − θ| > ε) ≤
EX |θ(θ̂n − θ)2

ε2
=

VarX |θ(θ̂n)
ε2

+ Bias2

ε2

• Thus, if θ̂n is unbiased, then as limn→∞ VarX |θ(θ̂n) = 0, θ̂n is also
consistent.

• You should know that the MLEs are consistent estimators (no need to
show).


