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Review of assumed topics from STA247
Expectation and variance are functions of the parameters alone - thus they
are constants!
• Expectation: the expected value of a random variable under the law

of its probability distribution; computed as a weighted (by probability
mass/density) average:

E(X ) =
∑

i
xiP(X = xi )

or
E(X ) =

∫
xfX (x)dx

• Variance: the expected variability of a random variable in reference to
its expected value:

Var(X ) =
∑

i
(xi − E(X ))2P(X = xi )

or
Var(X ) =

∫
(xi − E(X ))2fX (x)dx
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Review of assumed topics from STA247 (cont’d)

You can simply the above to:

Var(X ) = E[(X − E (X ))2] = E[X 2 − 2XE(X ) + E(X )2] (1)
= E(X 2)− 2E(X )E(X ) + E(X )2 = E(X 2)− E(X )2 (2)

• Moment generating function: a mathematical convenience to provide
an alternative way as supposed to working with p.d.f or p.m.f directly;
a real-valued function of t

MX (t) = E(etX ); t ∈ R

• From m.g.f to all moments: if we differentiate MX (t) w.r.t t to the
kth order, and set t = 0, we recover the kth moment.

mk = E(X k) = M(k)
X (0) = dkMX

dtk |t=0
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Review material practice

• Derive the first two moments for 1) a normal random variable; 2)
binomial random variable; 3) Poisson random variable

• Know the following (lower case are constants):
• E(a) = a
• E(E(X)) = E(X)
• E(

∑n
i=1 Xi ) =

∑n
i=1 E(Xi )

• E(aX) = aE(X)
• Var(X) = E(X 2)− E(X)2

• Var(aX) = a2Var(X)
• Var(a) = 0
• Var(Var(X)) = 0
• Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X ,Y )

• Derive the moment generating function for N (0, 1) and N (µ, σ2).
• Use the moment generating function to write out the first four

moments (non-centralized) of X ∼ N (0, 1) (MX (t) = e1/2t2) and
X ∼ N (µ, σ2) (MX (t) = eµt+1/2σ2t2).
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Recap from last lecture

1. know the sampling distribution of X̄ and other large sample behaviour
of X̄

2. be able to find estimators using the two approaches given the p.d.f or
p.m.f

3. know X̄ and S2 and their properties
a are they biased/unbiased estimators of µ and σ2?
b what is the MSE of X̄
c if the samples come from normal, show X̄ is sufficient.
d if the samples come from normal, how do the mean and variance

estimators using the two approaches compare to the estimators X̄ and
S2?
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An example question for 1)

A random sample of n = 100 high school students are drawn from all high
school students in the province of Ontario, the estimated mean height in
cm of this sample is 160cm while the estimated variance is 64cm.
• If someone from Statistics Canada told you that this average height

corresponds exactly to the 3rd quartile (75%) of the sampling
distribution of mean height in high school students. Can you give a
rough approximation to how far the estimate is from the true mean
height?
• Hint: find a statistic that has a standard normal distribution and then
use the connection between the standard deviation of a standard
normal and quantile distances.

• Answer: 0.5396cm or Φ−1(0.75)
√
σ̂2/n = x0.75

√
σ̂2/n

• What could you change to obtain a more accurate estimate of the
mean height?
• Answer: Increase sample size
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Topics covered in this lecture

• Variance of an estimator (precision)
• The jackknife method
• The bootstrap method

• Non-parameteric bootstrap
• Parametric bootstrap

• Interval estimators
• confidence interval (CI)
• CI for µ when σ2 is known
• CI for µ when σ2 is not known
• CI for σ2

• CI for p the proportion of success in Binomial
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Variance of an estimator (precision)

• The jackknife method
• Bootstrap methods
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We have an estimator, but how good is it?

• From last lecture we learnt some basic properties of a good estimator:
consistency, unbiasedness and sufficiency.

• We know that MSE provides a measure that balances the precision
and accuracy of an estimator

• MSE has two components, variability of the estimator and the bias.
• Bias is easy to estimate, due to the simple analytical construction

Bias = EX |θ(θ̂ − θ)

• For an unbiased estimator, the MSE is equal to the variance of the
estimator.

What about the variance of the estimator?
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Variance of the estimator

• The variance of the estimator θ̂, Var(θ̂) itself can be seen as a
parameter, and thus needs to be estimated.

• In practice, the square root of the variance is used to have the same
unit as the estimator.

• A realized estimate is often presented as θ̂ ± s.e.(θ̂) to show how
precise or stable the estimate is if we had calculated using different
samples.

• Ideally, we want a smaller variance so the estimates do not vary too
much across samples.
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An example: the sample mean

• Suppose we have observed the height (in cm) of n = 100 high-school
students (x1, . . . , xn), the mean

x̄ =
n∑

i=1
xi/n

is a single number summarizing the average height.
• However, we do not know how precise this number is. For example, if

x̄ = 160.763, are we more comfortable say the average height is
160cm or 160.7cm?
• This can be solved by calculating the standard error (which is the

realied value of the standard deviation of the estimator X̄ )

ŝe(x̄) = s/
√

n =
[ n∑

i=1
(xi − x̄)2/(n − 1)

]1/2
/
√

n

• If s.e. for the height example is 0.1, then we should not take the
second and third digits of 160.763 very seriously.
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What about when direct standard error formlas do not
exist?

• consider the 75% percentile (xq=0.75) or the third sample moment
(
∑

x3
i /n)

• we need a non-formulaic approach to solve a wide range of problems
• two computation-based methods come to the rescue!

• the jackknife estimate of standard error
• the bootstrap
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The jackknife method

Consider a realized sample x = (x1, . . . , xn) drawn iid from some unknown
distribution. We are interested in the standard error of a statistic θ̂ = s(x)
computed from the sample.
• Let x(−i) denote the sample with the ith element absent, and similarly
θ̂(−i) = s(x(−i)).

• This construction is called “leave-one-out”.
• Repeat the process for each i = 1, . . . , n and the jackknife estimate of
the standard error for θ̂ is

ŝejack =
[n − 1

n

n∑
i=1

(
θ̂(−i) − θ̂(.)

)2]1/2

where

θ̂(.) =
n∑

i=1
θ̂(−i)/n



14/53

Exercise

Compute the jackknife estimate of the standard error for θ̂ = x̄ .
Hints:

θ̂(−i) = (nx̄ − xi )/(n − 1)

θ̂(.) = x̄

simplify everything you get[ 1
(n − 1)n

n∑
i=1

(
xi − x̄

)2]1/2
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Bootstrap methods
If the jackknife method can be considered as a way to resample from the
original sample (taking n − 1 out of n), then bootstrap is a more
generalized method that utilizes resampling.
• Define a bootstrap sample to be the collection:

x∗ = (x∗1 , . . . , x∗n )

where each x∗i is a random draw with equal probability (i.e. with
replacement) from the sample (x1, . . . , xn).

• Similarly, we can compute from each bootstrap sample

θ̂∗ = s(x∗)

• Repeat so we end up with B(= 1000) bootstrap samples, and
(θ̂∗1 , . . . , θ̂∗B)
• The bootstrap estimate of the standard error of a statistic θ̂ = s(x) is

then

ŝeboot =
[ B∑

i=1

(θ̂∗i − θ̂∗)2

B

]1/2

where θ̂∗ =
∑B

i=1 θ̂
∗
i /B.
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nonparametric bootstrap

• The above procedure is called a non-parametric bootstrap as there
was no assumption about a parametric model.
• Any large sample properties of the bootstrap estimator se depends on

resampling with replacement
• You can change two things: the size of the boostrap sample n∗ and

the number of bootstrap samples B
• Generally the larger the better, but you can play with the code

yourself and see.
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An example of non-parametric bootstrap in R
x <- read.csv("random_normals.csv")$x
# You can simply do
# x = rnorm(100)
n <- length(x)
n_star <- n
B_sample <- 1000
# coding via a for loop
boot_mean <- NA
for (j in 1:B_sample){
boot_sample <- sample(x, n_star, replace=T)
boot_mean[j] <- mean(boot_sample)
}
print(sd(boot_mean))

## [1] 0.1019652

# simpler coding:
boot_mean_100 <- replicate(100, mean(sample(x, n_star, replace=T)))
boot_mean_1000 <- replicate(1000, mean(sample(x, n_star, replace=T)))
boot_mean_100000 <- replicate(100000, mean(sample(x, n_star, replace=T)))
print(c(sd(boot_mean_100), sd(boot_mean_1000), sd(boot_mean_100000)))

## [1] 0.09408072 0.09845401 0.09948915

library(bootstrap)
jackknife(x, mean)$jack.se

## [1] 0.1000919



18/53

An example of non-parametric bootstrap in R (cont’d)
library(ggplot2)
ggplot(data=data.frame(boot_mean), aes(x=boot_mean)) + geom_histogram(binwidth=0.02, colour="black", fill="white") +

xlab("mean in bootstrap sample of size 100,000") + ggtitle("Sampling distribution of mean via a nonparametric bootstrap")
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An example of non-parametric bootstrap in Python

import pandas
import numpy as np
x = pandas.read_csv("random_normals.csv")
n = len(x)
n_star = round(n*0.7)
B_sample = 10000
""" coding via a for loop """
boot_mean = []
for j in range(0, B_sample):

idx = np.random.choice(x.shape[0], n_star)
boot_sample = np.array(x)[idx,0]
boot_mean.append(boot_sample.mean())

print(np.std(np.array(boot_mean)))

## 0.119090173569

"""import matplotlib"""
"""import matplotlib.pyplot as plt"""
"""plt.hist(boot_mean, 20, density=True, facecolor='g', alpha=0.75)"""
"""plt.show()"""

For jackknife see here.

http://docs.astropy.org/en/stable/install.html
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An example of non-parametric bootstrap in Python
(cont’d)
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parametric bootstrap
Suppose the random variables were sampled from a known parametric
distribution with parameter θ:

X1, . . . ,Xn ∼ F (|θ)

• The parametric bootstrap is initiated first by estimating θ using the
sample x = (x1, . . . , xn); usually by maximum likelihood:

θ̂MLE = argmaxθL(θ|x)

• For each bootstrap sample of size n∗, we sample from the distribution

x∗1 , . . . , x∗n∗
∼ F (|θ̂MLE )

• Compute θ̂∗ = s(x∗1 , . . . , x∗n∗
)

• Obtain B(= 1000) number of bootstrap samples, the estimate of the
standard error of a statistic θ̂ = s(x) is again:

ŝeboot =
[ B∑

i=1

(θ̂∗i − θ̂∗)2

B

]1/2

where θ̂∗ =
∑B

i=1 θ̂
∗
i /B.
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An example of parametric bootstrap in R
x <- read.csv("random_normals.csv")$x
n <- length(x)
B_sample <- 10000
n_star <- n
# find mle of the normal
ll <- function(param){

mu <- param[1]
sigma2 <- param[2]
-sum(dnorm(x, mean = mu, sd = sqrt(sigma2), log=T))

}
mles <- nlm(ll, p=c(0,1))$estimate
# coding via a for loop
parboot_mean <- NA
for (j in 1:B_sample){
par_boot_sample <- rnorm(n_star, mean = mles[1], sd=mles[2])
parboot_mean[j] <- mean(par_boot_sample)
}
print(sd(parboot_mean))

## [1] 0.09861006

# simpler coding:
parboot_mean_100 <- replicate(100, mean(rnorm(n_star, mean = mles[1], sd=mles[2])))
parboot_mean_1000 <- replicate(1000, mean(rnorm(n_star, mean = mles[1], sd=mles[2])))
parboot_mean_10000 <- replicate(10000, mean(rnorm(n_star, mean = mles[1], sd=mles[2])))
print(c(sd(parboot_mean_100), sd(parboot_mean_1000), sd(parboot_mean_10000)))

## [1] 0.09809954 0.09818912 0.09857015
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An example of non-parametric bootstrap in R (cont’d)
library(ggplot2)
ggplot(data=data.frame(parboot_mean), aes(x=parboot_mean)) + geom_histogram(binwidth=0.02, colour="black", fill="white") +

xlab("mean in bootstrap sample of size 10,000") + ggtitle("Sampling distribution of mean via a parametric bootstrap")
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An example of parametric bootstrap in Python
import pandas
import numpy as np
from scipy.optimize import minimize
from scipy.stats import norm
"""np.random.normal(mu, sigma, 100)"""
x = pandas.read_csv("random_normals.csv")
n = len(x)
n_star = n
B_sample = 10000
""" coding via a for loop """
# Define the likelihood function where params is a list of initial parameter estimates
def normalLL(params):

# Resave the initial parameter guesses
mu = params[0]
sd = params[1]
logLik = -np.sum(norm.logpdf(x, loc=mu, scale=sd) )
# Tell the function to return the NLL (this is what will be minimized)
return(logLik)

# Run the minimizer
results = minimize(normalLL, [0,1], method='nelder-mead')
est_mean = results['x'][0]
est_sd = results['x'][1]
parboot_mean = []
for j in range(0, B_sample):

parboot_sample = norm.rvs(loc = est_mean, scale = est_sd, size=n_star)
parboot_mean.append(parboot_sample.mean())

print(np.std(np.array(parboot_mean)))

## 0.0999957363618
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An example of parametric bootstrap in Python (cont’d)
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Bootstrap methods (a quick summary)

Pros:
• conceptually simple
• (under some conditions) asymptotically consistent
• less assumptions (normality)
• the use is more general as we will see its use in the next a few lectures

Cons:
• it does not provide general finite-sample guarantees on performances
• computationally intensive (no longer a problem)
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Interval estimates

• Confidence Intervals (CI)
• CI for µ when σ2 is known
• CI for µ when σ2 is not known
• CI for σ2

• CI for p the proportion of success in Binomial
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From point estimate to interval estimate

• We have established several point estimator such as X̄ and S2

• Usually use mean squared error to assess the performance of an
estimator

EX |θ(θ̂ − θ)2 = VarX |θ(θ̂) + (EX |θ θ̂ − θ)2

• However, point estimate alone does not suggest how far or close we
are to the true parameter value

• Thus, we introduced the variance of an estimator VarX |θ(θ̂)
• In other discipline, you might have seen something like θ ± sd to

express a range of plausible values
• Can we do better and put a plausibility on any range?
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Confidence Intervals (CI)

• A confidence interval (CI) is a range estimated from the data
x1, . . . , xn that might contain the true value of an unknown
population parameter θ.

• A confidence level (1− α) is the proportion of times θ is captured in
the interval over confidence intervals constructed using a large
number of random samples.
• In other words, you have 100α% chance of not capturing θ
• Often α = 0.01, 0.05, 0.1 corresponding to 99%, 95% and 90% CI

• Intuitively, the wider the CI, the more likely the true value is captured,
and the smaller α is; on the other hand, the narrower the CI, the less
likely true value is captured.

• However, the best scenario would be a narrow CI at a small α, which
implies high precision with high probability of capturing θ.
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How to construct confidence intervals for a statistic?

• X̄ the mean estimators
• the proportion of success falls into this category as well since

E(1sucess) = P(Success) ∗ 1 + P(!Success) ∗ 0 = P(Success)

• S2 the variance estimator



31/53

Confidence interval for µ

What do we know about X̄?
• Define X̄ = 1

n
∑n

i=1 Xi .
• (a random normal sample) Let X1, . . . ,Xn be a random sample from
N (µ, σ2).
• We have E(X̄) = µ and Var(X̄) = σ2

n .
• The above implies X̄ is unbiased and thus its MSE is Var(X̄).
• We have X̄ ∼ N (µ, σ2

n )

• (a random sample) Let X1, . . . ,Xn be a random sample from a
population with mean µ and variance σ2 <∞.
• We have E(X̄) = µ and Var(X̄) = σ2

n .
• The above implies that X̄ is unbiased and thus its MSE is simply
Var(X̄).
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Visualize the sampling distribution of X̄ under normality
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Recall distribution of X̄ :

MX̄ (t) = E(etX̄ ) (3)

= E(et 1
n

∑n
i=1

Xi ) (4)

= E(Πn
i=1et 1

n Xi ) (5)

= Πn
i=1E(et 1

n Xi ) (6)

= Πn
i=1(etµ/n+1/(2)σ2(t/n)2

) (7)

= (etµ/n+1/(2)σ2(t/n)2
)n (8)

= etµ+1/(2n)σ2t2
(9)
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CI for µ when σ2 is known
Since X̄ ∼ N (µ, σ

2

n ), we can define

Z = X̄ − µ
σ/
√

n
∼ N (0, 1)

where Z is a standard normal random variable.
• We want to find l and u such that PrX̄ (l < µ < u) = 0.95 under the

sampling distribution of X̄ .
• This means, l and u must be functions of X̄ (otherwise everything
inside the probability is constant, in which case the probability is
either 0 or 1)

PrX̄ (l < µ < u) = PrX̄ (X̄ − l > X̄ − µ > X̄ − u) (10)

= Pr( X̄ − l
σ/
√

n
>

X̄ − µ
σ/
√

n
>

X̄ − u
σ/
√

n
) (11)

= Pr( X̄ − l
σ/
√

n
> Z >

X̄ − u
σ/
√

n
) (12)
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CI for µ when σ2 is known

• We know the sampling distribution of X̄ is centered at µ, to recover
the 95% confidence interval (between 0.975 quantile and 0.025
quantile), solve for
• X̄−l

σ/
√

n = Φ−1(0.975) = 1.96
• X̄−u

σ/
√

n = Φ−1(0.025) = −1.96

• The upper end point is u = 1.96σ/
√

n + X̄ , while the lower end point
is l = −1.96σ/

√
n + X̄
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CI for µ when σ2 is known (cont’d)

The 95% confidence interval of µ under normality with known σ2 is
(X̄ − 1.96σ/

√
n, X̄ + 1.96σ/

√
n) or X̄ ± 1.96σ/

√
n.

• Can you repeat the calculation to find the 99% CI or the 90% CI?
• How does the width of the CI compare when we change the

confidence level (α = 0.1, 0.05, 0.01)?
• Can you think of ways to reduce the CI without changing the

confidence level?
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An example question
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Solution: Step by Step

1. Setting up the problem: what is the random sample?
• X1, . . . ,Xn where Xi is the recorded pound-force required to break the
binding

2. What do we know?
• σ = 0.8
• Width of the 95% CI is 0.1 lb

3. Find the analytical expression for 95% CI of the average force
required:
• (X̄ − 1.96σ/

√
n, X̄ + 1.96σ/

√
n)

4. Given σ = 0.8, solve for n

width of CI = 1.96σ/
√

n ∗ 2 = 0.1
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CI for µ when σ2 is not known

We still have X̄ ∼ N (µ, σ
2

n ), but since now σ is not known, we can not
rely on it to give the sampling distribution.
Define

T = X̄ − µ
S/
√

n
= (X̄ − µ)

(σ/
√

n)
(σ/
√

n)√
S2/n

Does this have a known distribution?
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Review of a chi-squared distribution

• Definition: If Z = Xi−µ
σ ∼ N (0, 1),then we can show by m.g.f or a

direct change of variable that Z 2 =
(

Xi−µ
σ

)2
∼ χ2(1).

• A random variable Y ∼ χ2(k) is a chi-squared random variable with
degrees of freedom k.
• E(Y ) = k
• Var(Y ) = 2k

• (n − 1)S2/σ2 =
∑n

i=1(Xi − µ)2/σ2 − n(X̄ − µ)2/σ2 has a
chi-squared distribution with d.f (n − 1).

• The distribution is asymmetric.
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Chi-squared distributions
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Recall the sampling distribution of T

• We first construct this statistic to be a ratio of two statistics:
X̄−µ
S/
√

n = (X̄−µ)
(σ/
√

n)

√
σ2/n√
S2/n

= (X̄−µ)
(σ/
√

n)
1√

(n−1)S2/σ2 1
n−1

• Notice the top one follows standard normal and the bottom is√
χ2

n−1/(n − 1).
• As we have shown previously that these two are independent, we can

thus derive the distribution by looking at the joint distribution of the
two components.

• The result you need to know is that X̄−µ
S/
√

n follows a student’s
t-distribution with degrees of freedom k = n − 1, or T ∼ tk (k ≥ 2)
• E(T ) = 0
• Var(T ) = k/(k − 2)

fT (t|k) =
Γ
(

k+1
2

)
Γ
(

k
2

) 1
(kπ)1/2

1
(1 + t2/k) k+1

2
, −∞ < t <∞
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Student’s t distribution
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CI for µ when σ2 is not known

• We want to find l and u such that PrT̄ (l < µ < u) = 0.95 under the
sampling distribution of T̄ .

• Again, l and u must be functions of X̄ .
Can you try to derive this one on your own?
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CI for µ when σ2 is not known

PrT (l < µ < u) = PrT (X̄ − l > X̄ − µ > X̄ − u) (13)

= Pr( X̄ − l
s/
√

n
>

X̄ − µ
s/
√

n
>

X̄ − u
s/
√

n
) (14)

= Pr( X̄ − l
s/
√

n
> T >

X̄ − u
s/
√

n
) (15)

• We know the sampling distribution of X̄ is centered at µ, to recover
the 95% confidence interval (between 0.975 quantile and 0.025
quantile), solve for
• X̄−l

s/
√

n = t0.975,n−1

• X̄−u
s/
√

n = t0.025,n−1

• The upper end point is u = X̄ − t0.025,n−1s/
√

n, while the lower end
point is l = X̄ − t0.975,n−1s/

√
n.
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Quantiles of student’s t
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Quantiles of student’s t

c(qt(0.975, 100-1), qt(0.025, 100-1))

## [1] 1.984217 -1.984217

c(qt(0.975, 1000-1), qt(0.025, 1000-1))

## [1] 1.962341 -1.962341

from scipy.stats import t
print(t.ppf(0.975, df=100-1))

## 1.98421695151

print(t.ppf(0.025, df=100-1))

## -1.98421695151
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CI for σ2

What do we know about S2?
• E(S2) = σ2

• χ2 = (n − 1)S2/σ2 =
∑n

i=1(Xi − µ)2/σ2 − n(X̄ − µ)2/σ2 has a
chi-squared distribution with d.f (n − 1).

Can you derive u and l such that

PS2 (l < σ2 < u) = 0.95
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CI for σ2

PrS2 (l < σ2 < u) = Pr(1/l > 1/σ2 > 1/u) (16)
= Pr((n − 1)S2/l > (n − 1)S2/σ2 > (n − 1)S2/u)

(17)
= Pr((n − 1)S2/l > χ2 > (n − 1)S2/u) (18)

• We know the sampling distribution of S2 is centered at σ2, to recover
the 95% confidence interval (between 0.975 quantile and 0.025
quantile), solve for
• (n − 1)S2/l = χ2

0.975,n−1
• (n − 1)S2/u = χ2

0.025,n−1

Note that since the quantiles of chi-squared random variables are not
symmetric you will have to get two different values. On a test, this will be
provided to you.
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Quantiles of a chi-squared

c(qchisq(0.975, 100-1), qchisq(0.025, 100-1))

## [1] 128.42199 73.36108

c(qchisq(0.975, 1000-1), qchisq(0.025, 1000-1))

## [1] 1088.487 913.301

from scipy.stats import chi2
print(chi2.ppf(0.975, df=100-1))

## 128.421988644

print(chi2.ppf(0.025, df=100-1))

## 73.3610801913
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CI for p the proportion of success in Binomial

Let X1, . . . ,Xn be a random sample from a binomial distribution with
B(N, p).
Could you try this one yourself?
• Find an estimator of p
• Use CLT to conclude the sampling distribution of p
• Find the sampling distribution involing p̂ and p
• Find the 95% CI for p given N

Solution will be given at the next class.
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Key insights about CIs

• When constructing a CI, we need to find the sampling distribution or
the approximated sampling distribution of the estimator θ̂ relative to
the parameter θ.

• When the sampling distribution is not easy to work with, we should
try to find a quantity that contains both θ̂ and θ that does have a
simple distribution that can be translated to quantiles (e.g. Z or T ).

• For X̄ from non-normal samples, we can invoke the CLT when n > 30,
the CI will be approximated rather than exact.

• Know relationships among α (confidence level), width of the CI,
sample size (n).



53/53

Open question for next lecture

Combine what you now know about the bootstrap method and confidence
interval, can you come up with a 95% for the median of a random sample
(any random sample) of size n = 100?


