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Topics covered in the previous lecture

• Concepts of a statistical test
• Structure of a hypothesis test
• Test statistics
• Rejection region and P-values
• One-sided vs. two-sided test

• Examples of statistical tests
• Statistical tests of µ (normal, t, and binomial)
• Statistical tests to compare two samples

• test for equality of means (student’s t-tests)
• test for equality of variances (F-test)
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A statistical test

• Parameter of interest
• Null Hypothesis about a particular parameter value
• Alternative Hypothesis
• Test statistics with a known distribution under the null hypothesis
• Significance level
• P-value

The overall goal of a statistical test is to determine whether there is
sufficient evidence (from data) to “reject” the null hypothesis (or what we
believed to be the truth).
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Review: The Null and Alternative Hypothesis

The null hypothesis, Ho

• States the assumption (numerical) to be tested
• Begin with the assumption that the null hypothesis is TRUE.
• Always contains the “=” sign

The alternative hypothesis, Ha

• Is the opposite of the null hypothesis
• Challenges the status Ho
• Never contains just the “=” sign
• Is generally the hypothesis that is believed to be true by the researcher
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Practicing writing the null and alternative hypothesis

• Identify the parameter of interest (e.g. µ, p)
• Identify an established value for the null hypothesis

• what is the convention
• what is the prior belief
• what is the expert opinion

• Decide whether the alternative hypothesis should be
• two-sided (disagree with the prior belief without any subjective
opinion on directionality)

• one-sided (a clear preference for the parameter to be greater or less
than some value)
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Try the following for yourself

Define the parameter of interest and state the null and alternative
hypotheses.
• Example 1: A new design for the braking system on a certain type of

car has been proposed. For the current system, the true average
braking distance at 40 mph under specified conditions is known to be
120 ft. It is proposed that the new design be implemented only if
sample data strongly indicates a reduction in true average braking
distance for the new design.
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Try the following for yourself

• Example 2: A researcher thinks that if knee surgery patients go to
physical therapy twice a week (instead of 3 times), their recovery
period will be longer. Average recovery times for knee surgery
patients is 8.2 weeks.
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Try the following for yourself

• Example 3: A sample of 200 people has a mean age of 21 with a
population standard deviation (σ) of 5. Test the hypothesis that the
population mean age is 18.9 at α = 0.05.
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Test statistic

• The test can only be performed using an estimator of the parameter
since we do not have knowledge of the parameter.

• We often use an estimator that has a known sampling distribution:
• X̄ ∼ N (µ, σ2/n) either exactly or by CLT
• p̂ ∼ N (p, (1− p)p/n) by CLT

• This way we can compare whether the observed test statistic (tobs)
is more extreme than under the null hypothesis µ = µo (one sample)
or µ1 − µ2 = δo

• for one-sample z-test: tobs = x̄−µo
σ/
√

n

• for one-sample t-test: tobs = x̄−µo
s/
√

n

• for two-sample independent t-test: tobs = x̄1−x̄2−δo
sp/
√

1/n1+1/n2

• for two-sample paired t-test: tobs = d̄−δo
sD/
√

n where di = xi − x ′i and

s2
D =

∑n
i=1

(di−d̄)2

n−1 .
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P-value

The probability of observing something more extreme than at the expected
significance level α under the null hypothesis is the P-value.
• a conditional probability that the observed test statistic is more

extreme than would be expected under the null hypothesis.
• Two-sided test: p-value = P(T > |tobs||µ = µo) or

2min(P(T > tobs|µ = µo),P(T < tobs|µ = µo)).
• One-sided test: p-value = P(T > tobs|µ = µo)
• One-sided test: p-value = P(T < tobs|µ = µo)
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Significance level

A significance level (α) is an established level of risk for making a mistake
under the null
• Two-sided test: α = P(T > Φ1−α/2|µ = µo) + P(T < Φα/2|µ = µo)
• One-sided test: α = P(T > Φ1−α|µ = µo)
• One-sided test: α = P(T < Φα|µ = µo)
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A summary of p-value comparisons

• A few conventions regarding rejecting:
• If P-value< α, reject Ho .
• If P-value> α, do not or fail to reject Ho .

• Smaller P-value → less likely Ho is to be true
• p-value< 0.001→ very strong evidence against Ho
• 0.001< p-value < 0.01→ strong evidence against Ho .
• 0.01< p-value < 0.05→ moderate evidence against Ho
• 0.05< p-value < 0.1→ weak evidence against Ho
• p-value> 0.1→ no evidence against Ho
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P-value and CI should agree about statistical significance

• You can use either P values or confidence intervals to determine
whether your results are statistically significant.
• The confidence level is equivalent to 1− α level. So, if your

significance level is 0.05, the corresponding confidence level is 95%.
• If the P value is less than your significance (α) level, the hypothesis
test is statistically significant.

• If the CI does not contain the null hypothesis value (Ho value), the
results are statistically significant.

• If P-value< α, the CI will not contain the null hypothesis value.
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P-value and CI should agree about statistical significance

To understand why the results always agree, let’s recall how both the
significance level and confidence level work.
• The significance level defines the distance the sample mean must be

from Ho to be considered statistically significant.
• The confidence level defines the distance for how close the confidence

limits are to sample mean.
• Both the significance level and the confidence level define a distance

from a limit to a mean. Guess what? The distances in both cases are
exactly the same!
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Three ways to make decisions

Let tobs denote the test statistic T with the observed value plugged in
under the null hypothesis θ = θo .
• p-value = P(|T | > tobs)

• if p-value < α, reject
• o.w. fail to reject

• Compare |tobs| to Φ−1(1− α/2) under the distribution of test
statistics under the null
• if |tobs| > Φ−1(1− α/2) reject
• o.w. fail to reject

• Compare θo to the 95% or 99% confidence interval for θ
• if θo is outside of the CI then reject
• o.w. fail to reject
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Topics covered in this lecture

• Good and bad statistical tests: assessing errors of a test
• Type I error
• Type II error

• Statistical power
• Test for equality of means in more than two samples
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Statistical evidence to inform decisions

• Type I error = P(reject Ho |Ho is true).
• Type II error = P(fail to rejct Ho |Ho is false )
• Significance level α: maximum allowable probability of making type I
error (usually 5% or 1%)



18/57

Error types

https://effectsizefaq.com/index/faqs/page/3/

https://effectsizefaq.com/index/faqs/page/3/
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Type I error

• Clearly, as long as α > 0, there is α probability that we might reject
the null hypothesis when it is true.

• Meaning even if the null hypothesis were true but we might reject it
anyways because of the randomness in T

• To make sure we do not make this mistake, we require that
p-value < α.

• Let’s see some examples of how to empirically assess type I error rates
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Type I error simulation setup

Suppose X1, . . . ,Xn ∼ N (µ, σ2 = 5), where n = 100. We want to test the
null hypothesis that the true mean µ = 0 with a two-sided test (i.e. the
alternative is µ 6= 0).
• Step 1: Simulate x1, . . . , x500 according to N (0, 5σ2 =).
• Step 2: Perform one sample z-test (X̄ ∼ N (µ, σ2 = 5/500)) and
obtain a p-value.

• Repeat Step 1 and 2, B = 1000 times, giving a vector of p-values
p1, . . . , p1000.

• What is your conclusion for each of the p-value?
• How many of those p-values do you expect to be less than α = 0.05
or α = 0.01?
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Type I error simulation R

n = 500; mu_o = 0; sigma = sqrt(5); B = 1000
pval <- NA
i = 1;
while(i <= B){
sample_cases <- rnorm(n, mu_o, sigma)
pval[i] <- 2*min(pnorm((mean(sample_cases) - mu_o)/(sqrt(sigma^2/n)), lower=F),

pnorm((mean(sample_cases) - mu_o) / (sqrt(sigma^2/n)), lower=T))
i = i + 1
}
sum(pval < 0.05)/B

## [1] 0.058

sum(pval < 0.01)/B

## [1] 0.017
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Type I error simulation R

qqplot(-log10(pval), -log10(runif(B))); abline(0,1,col=2)
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Type I error simulation Python

import numpy as np
from scipy import stats
import random
n=500
mu_o=0
B=1000
pval=[]
for j in range(0, B):

sample_cases = np.random.normal(mu_o, 5**0.5, n)
z_scores = (sample_cases.mean())/(5.0/n)**(0.5)
pval.append((1-stats.norm.cdf(abs(z_scores)))*2)

print(sum(i < 0.05 for i in pval))

## 51

print(sum(i < 0.01 for i in pval))

## 12
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Type I error summary

• The above indicates the number of false positives is roughly as
expected at α.

• When the type I error of a test is systematically higher than α, we
call the test to have an inflated type I error rate

• When the type I error of a test is systematically lower than α, we call
the test to be conservative

• Clearly we would like to use tests that have well-controlled type I
error (close to α)
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Type II error

Suppose the null hypothesis is θ = θo :
• Type II error captures the inability to reject a false null hypothsis,

usually denoted by β.

β = P(Ho not rejected|Ho is false)

• Note that β is specific to the choice of θ under the alternative
(θ′ 6= θo):

β = P(Ho not rejected|θ = θ′)

• So ideally, the smaller the β is for a particular µ′, the better the test
(always compare two tests for the same µ′ and the same α).
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An example of Type II error under the z-test

The rejection region of a one sample test
• under normality (X1, . . . ,Xn ∼ N (µ, σ2))
• with σ2 known
• at significance level α
• for a two-sided alternative

is X̄ > µo + Φ−1(1− α/2)σ/
√

n and X̄ < µo − Φ−1(1− α/2)σ/
√

n.
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An example of Type II error under the z-test
The type II error for a particular µ′ 6= µo is:

β(µ′) = P(µo − Φ−1(1− α/2)σ/
√

n < X̄ < µo + Φ−1(1− α/2)σ/
√

n|µ = µ′)

(1)

= P(µo − µ′

σ/
√

n
− Φ−1(1− α/2) < X̄ − µ′

σ/
√

n
<
µo − µ′

σ/
√

n
+ Φ−1(1− α/2))

(2)

= P(µo − µ′

σ/
√

n
− Φ−1(1− α/2) < Z <

µo − µ′

σ/
√

n
+ Φ−1(1− α/2))

(3)

= Φ
(µo − µ′

σ/
√

n
+ Φ−1(1− α/2)

)
− Φ

(µo − µ′

σ/
√

n
− Φ−1(1− α/2)

)
(4)

From this expression, can you decrease the type II error for a particular µ′?
(Notice that I had corrected all α to α/2 since this is clearly a two-sided
tests as we do not know whether µ′ > µ or µ′ < µ)
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Type II error simulation setup

Suppose X1, . . . ,Xn ∼ N (µ, σ2 = 5), where n = 10. We want to find the
type II error for µ′ = 0.5 against the null hypothesis that the true mean
µ = 0 with a two-sided test (i.e. the alternative is µ 6= 0).
• Step 1: Simulate x1, . . . , x10 according to N (µ′, σ2 = 5).
• Step 2: Perform one sample z-test (X̄ ∼ N (µo , σ

2 = 5/10)) and
obtain a p-value.

• Repeat Step 1 and 2, B = 1000 times, giving a vector of p-values
p1, . . . , p1000.

• How many of those p-values do you expect to be less than α = 0.05
or α = 0.01?
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Type II error simulation R

n = 10; mu_o = 0; sigma = sqrt(5); B = 1000; mu_p = 0.5
pval <- NA
i = 1;
while(i <= B){
sample_cases <- rnorm(n, mu_p, sigma)
pval[i] <- 2*min(pnorm((mean(sample_cases) - mu_o)/(sqrt(sigma^2/n)), lower=F),

pnorm((mean(sample_cases) - mu_o) / (sqrt(sigma^2/n)), lower=T))
i = i + 1
}
sum(pval > 0.05)/B

## [1] 0.892

sum(pval > 0.01)/B

## [1] 0.968
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Type II error simulation R

Suppose we increase the sample size to n = 100:

n = 100; mu_o = 0; sigma = sqrt(5); B = 1000; mu_p = 0.5
pval <- NA
i = 1;
while(i <= B){
sample_cases <- rnorm(n, mu_p, sigma)
pval[i] <- 2*min(pnorm((mean(sample_cases) - mu_o)/(sqrt(sigma^2/n)), lower=F),

pnorm((mean(sample_cases) - mu_o) / (sqrt(sigma^2/n)), lower=T))
i = i + 1
}
sum(pval > 0.05)/B

## [1] 0.426

sum(pval > 0.01)/B

## [1] 0.652
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Type II error simulation Python

import numpy as np
from scipy import stats
import random
n=10
mu_o=0
mu_p=0.5
B=1000
pval=[]
for j in range(0, B):

sample_cases = np.random.normal(mu_p, 5**0.5, n)
z_scores = (sample_cases.mean())/(5.0/n)**(0.5)
pval.append((1-stats.norm.cdf(abs(z_scores)))*2)

print(sum(i > 0.05 for i in pval))

## 896

print(sum(i > 0.01 for i in pval))

## 964
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Type II error simulation Python

Suppose we increase the sample size to n = 100:
import numpy as np
from scipy import stats
import random
n=100
mu_o=0
mu_p=0.5
B=1000
pval=[]
for j in range(0, B):

sample_cases = np.random.normal(mu_p, 5**0.5, n)
z_scores = (sample_cases.mean())/(5.0/n)**(0.5)
pval.append((1-stats.norm.cdf(abs(z_scores)))*2)

print(sum(i > 0.05 for i in pval))

## 365

print(sum(i > 0.01 for i in pval))

## 603
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Statistical power

Contrary to type II error, statistical power is defined as:

Power = 1− β = P(Ho is rejected at significance level α|Ho is false)

• Statistical power reflects the strength of a test to detect a specific
alternative at some α value.

• The higher the statistical power (given an possible true parameter
value), the more likely we are to reject the null hypothesis in a
particular sample.

• Statistical power is considered only under the alternative
hypothesis

• Type I error α is considered only under the null hypothesis
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Statistical power
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Statistical power, type I error, type II error and effect size

Suppose the null hypothesis is θ = θo while a particular value of the
alternative is θ′. The statistical power of rejecting θ = θo while assuming
θ = θ′ is 1− β(θ′).
• Denote δ = θo − θ′
• The significance level is at α
• The sample size is n

How do we increase the statistical power by varying these values?
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(Not tested) An example of Statistical power for the t-test
(two-sided)

The statistical power of rejecting the null with a one sample t-test for a
particular µ′ > µo is:

1− β(θ′) = 1− P(X̄ < µo − t(1−α/2,n−1)S/n|µ = µ′) (5)

= 1− P( X̄ − µ′
S/n <

µo − µ′

S/n − t(1−α/2,n−1)) (6)

= 1− P(T <
µo − µ′

S/n − t(1−α/2,n−1)) (7)

(8)

where t(1−α/2,n−1) is the quantile value for a t-distributed random variable
with degrees of freedom n − 1.
Note that since I do not give a close form representation or table for the
quantile of t-quantile under a mean difference, you will not be required to
actually calculate the power for a two-sided t-test.
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An example of Statistical power for the t-test

From the expression above, can you come up with ways to increase the
statistical power?
• Notice that when µo = µ′, power is equal to α (i.e. power is always

greater or equal to α)
• Everything else fixed, if α decreases, then the quantile increases, the
power decreases.

• Everything else fixed, if µ′ − µo increases, then the quantile
decreases, the power increases.

• Everything else fixed, if n increases, then the quantile decreases, the
power increases.
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An example of Statistical power for the t-test (one-sided)

Suppose the null hypothesis is θ = θo while a particular value of the
alternative is θ′. The statistical power of rejecting θ = θo while assuming
θ = θ′ is denoted by β(θ′).
• Now we have µ′ < µo

• Can you replicate the calculation above and conclude under what
circumstances, the power would increase?
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Statistical power simulation

one sample t-test examples (assume σ2 = 1 is unknown):
• Scenario 1: Suppose X1, . . . ,Xn ∼ N (µ, σ2), where n = 10. We want

to find the power for each µ′ > 0 against the null hypothesis that the
true mean µ = 0 with a two-sided test (i.e. the alternative is µ 6= 0).

• Scenario 2: Suppose X1, . . . ,Xn ∼ N (µ, σ2), where n = 100. We
want to find the power for each µ′ > 0 against the null hypothesis
that the true mean µ = 0 with a two-sided test (i.e. the alternative is
µ 6= 0).

• Scenario 3: Suppose X1, . . . ,Xn ∼ N (µ, σ2), where n = 100. We
want to find the power for each µ′ < 0 against the null hypothesis
that the true mean µ = 0 with a one-sided test (i.e. the alternative is
µ < 0).
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Statistical power simulation R (scenario 1)

n = 10; mu_o = 0; B = 1000;
mu_seq <- seq(0,1,0.1)
power1 <- data.frame("alpha5" = NA, "alpha1" = NA)
for (j in 1:length(mu_seq)){
p_value1 <- replicate(B, t.test(rnorm(n, mu_seq[j], 1), mu = 0)$p.value)
power1[j,] <- c(sum(p_value1 < 0.05)/B, sum(p_value1 < 0.01)/B)
}
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Statistical power simulation R (scenario 1)
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Statistical power simulation R (scenario 2)

Suppose we increase the sample size to n = 100:
n = 100; mu_o = 0; B = 1000;
mu_seq <- seq(0,1,0.1)
power2 <- data.frame("alpha5" = NA, "alpha1" = NA)
for (j in 1:length(mu_seq)){
p_value2 <- replicate(B, t.test(rnorm(n, mu_seq[j], 1), mu = 0)$p.value)
power2[j,] <- c(sum(p_value2 < 0.05)/B, sum(p_value2 < 0.01)/B)
}
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Statistical power simulation R (scenario 2)
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Statistical power simulation R (scenario 3)

Suppose the test is one-sided with n = 100:
n = 100; mu_o = 0; B = 1000;
mu_seq <- seq(-1,0,0.1)
power3 <- data.frame("alpha5" = NA, "alpha1" = NA)
for (j in 1:length(mu_seq)){
p_value3 <- replicate(B, t.test(rnorm(n, mu_seq[j], 1), mu = 0, alternative = "less")$p.value)
power3[j,] <- c(sum(p_value3 < 0.05)/B, sum(p_value3 < 0.01)/B)
}
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Statistical power simulation R (scenario 3)
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Statistical power simulation Python (scenario 1)

import numpy as np
from scipy import stats
import random
from __future__ import division
n=10
mu_o=0
mu_seq=np.arange(0.0, 1.0, 0.1)
B=1000
power1=list()
for i in range(0, len(mu_seq)):

pval=[]
for j in range(0, B):

sample_cases = np.random.normal(mu_seq[i], 5**0.5, n)
z_scores = (sample_cases.mean())/(5.0/n)**(0.5)
pval.append((1-stats.norm.cdf(abs(z_scores)))*2)

power1.append([round(sum(i < 0.05 for i in pval)/B,3), round(sum(i < 0.01 for i in pval)/B,3)])
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Statistical power simulation Python (scenario 2)

Suppose the sample size n = 100:
import numpy as np
from scipy import stats
import random
from __future__ import division
n=100
mu_o=0
mu_seq=np.arange(0.0, 1.0, 0.1)
B=1000
power2=list()
for i in range(0, len(mu_seq)):

pval=[]
for j in range(0, B):

sample_cases = np.random.normal(mu_seq[i], 5**0.5, n)
z_scores = (sample_cases.mean())/(5.0/n)**(0.5)
pval.append((1-stats.norm.cdf(abs(z_scores)))*2)

power2.append([round(sum(i < 0.05 for i in pval)/B,3), round(sum(i < 0.01 for i in pval)/B,3)])
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Statistical power simulation Python (scenario 3)

Suppose the test is one-sided with sample size n = 100:
import numpy as np
from scipy import stats
import random
from __future__ import division
n=100
mu_o=0
mu_seq=np.arange(-1.0, 0, 0.1)
B=1000
power3=list()
for i in range(0, len(mu_seq)):

pval=[]
for j in range(0, B):

sample_cases = np.random.normal(mu_seq[i], 5**0.5, n)
z_scores = (sample_cases.mean())/(5.0/n)**(0.5)
pval.append(stats.norm.cdf(z_scores))

power3.append([round(sum(i < 0.05 for i in pval)/B,3), round(sum(i < 0.01 for i in pval)/B,3)])
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How about equality of means in more than two
samples?
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Basic Framework of one-way ANOVA

• This is an extension of two-sample (σ2
1 = σ2

2) t-test.
• The pooled-variance t-test tests the null hypothesis that two
population means are equal, i.e. H0 : µ1 = µ2.

• The one-way Analysis of Variance (ANOVA) can test the equality
of several population means. That is:

H0 : µ1 = µ2 = . . . = µk , Ha : ∃i , j s.t. µi 6= µj

• Assumptions
• Normal populations, i.e. assume normality for each population.
• Equality of population variances, σ2

1 = σ2
2 = . . . = σ2

k .
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Basic Framework of one-way ANOVA

• The term one- way, also called one-factor, indicates that there is a
single explanatory variable (“treatment”) with two or more levels, and
only one level of treatment is applied at any time for a given subject.

• When the factor variable has exactly two levels, one-way ANOVA and
two independent samples t-test always come to the the same
conclusions regardless of which method we use.

• ANOVA: compare means by analysing variability. Below is a bit
history of ANOVA
• It goes back to early work by Fisher in 1918 on mathematical genetics.
• Further developed by R.A. Fisher in 1920.
• The convenient acronym ANOVA was coined much later, by John W.
Tukey (1915–2000), the pioneer of exploratory data analysis (EDA)
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ANOVA set up

Yij ∼ N(µi , σ
2), i = 1, 2, . . . , r ; j = 1, 2, . . . , ni

• µi is the mean for a factor variable at level i
• For each i , we draw ni independent samples Yjj
• Total sample size: n =

∑r
i=1 ni

• Denote Ȳi. be i-the level mean and Ȳ.. be the grand mean.



53/57

ANOVA: Hypothesis of equal means

• Null and alternative:

H0 : µ1 = µ2 = . . . = µr , Ha : ∃i 6= j , s.t. µi 6= µj

• Test Statistic

F ∗ = MST
MSE = SST/(r − 1)

SSE/(n − r) ∼ Fr−1,n−r under H0

• If H0 is true, F ∗ ≈ 1, we don’t have evidence to reject H0.
• If H0 is false, MST > MSE ,F ∗ increases. So large values of observed

F ∗ are evidence against H0, and we test H0 using a one-tailed test.

• Decision: rejecting at significance level α if F ∗ is too big, that is, we
reject H0 if

F ∗ > F1−α,r−1,n−r
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One-way ANOVA

Why analysing variance help to compare group means
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next week schedule

• Monday: Midterm solution and review
• Wednesday: Regression: moving from estimation to prediction

• regression as a supervised learning technique
• examples of regression applications
• training and testing
• cross-validation
• optimization
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week of August 6 schedule

• Monday: civic holiday no lecture
• Wednesday: simple and multiple linear regression

• Through constructing a regression model with unknown parameters
• Estimating unknown parameters to obtain an estimated model
• Use the estimated model to predict a new observation
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final week schedule

• Monday: review lecture + office hour 2-6pm
• Thursday (August 16th): office hour 10am-2pm
• Friday: Final Exam scheduled for 9am-12pm


