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Topics covered in this lecture

• Distinguish between a functional relationship and a statistical
relationship.

• Understand the least squares (LS) method.
• Know how to derive and obtain the LS estimates b1, b0.
• Recognize the difference between a population regression line and the
estimated regression line.

• Know the Gauss-Markov conditions for simple linear regression.
• Know the normal error regression model
• Interpret the intercept b0 and slope b1 of an estimated regression
equation.

• Understand the coefficient of determination R2 and how to interpret it
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What is regression?

• Regression means "going back"
• Linear regression/linear models: a procedure to analyze data
• Historically, Francis Galton (1822-1911) invented the term and
concepts of regression and correlation.

• He predicted child’s height from fathers height
• Sons of the tallest fathers tended to be taller than average, but shorter

than their fathers.
• Sons of the shortest fathers tended to be shorter than average, but

taller than their fathers.
• He was deeply concerned about "regression to mediocrity".
• A brief history of Linear Regression and more about Galton,

http://www.amstat.org/publications/jse/v9n3/stanton.html

• Regression analysis is a statistical approach to summarize and study
the relationships between variables in a data set.

http://www.amstat.org/publications/jse/v9n3/stanton.html
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Response and predictor variables

• One variable, denoted Y , is regarded as the response (or outcome, or
dependent) variable

• whose behaviour that we want to study under the impact of the other
variables

• sometimes unavailable, so we would like to be able to predict

• The other variable, denoted X , is regarded as the predictor (or
explanatory, or independent) variable.

• variables that gives combinations of conditions under which we want
to examine the response variable (e.g. drug treatments, experimental
conditions)

• variables that provides information (e.g. covariates including
demographical information, educational background, etc.)
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Types of relationships

Relationship between Y and X
• Functional (or deterministic) Relationships

• Y = f (X), where f() is some function. eg. Circumference=π×
diameter.

• the relationship is deterministic through the function, for each possible
X there is only one Y .

• Statistical Relationships
• Y = f (X) + ε, where ε is the random error term. eg. a simple linear
regression model.

• the relationship is probabilistic (contains random noise) due to the
random error, for each possible X , there is a unique Y (if ε is
continuous, then the probability of obtaining two exactly the same
value is 0 )
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What does the data look like?

i X Y
1 0 6.95
2 1 5.22
3 2 6.46
4 3 7.03
5 4 9.71
6 5 9.67
7 6 10.69
8 7 13.85
9 8 13.21
10 9 14.82

There are n = 10 observations. The third observation is the pair
(x3, y3) = (2, 6.46). In a real dataset, usually you don’t have the index i
column as given in the table.
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Types of relationships
• Scatter plots of data pair (Yi ,Xi )

• For each of these relationships, the equation, Y = f (X ), describes
the relationship between the two variables.

• We are not interested in the functional relationship (deterministic) in
this course.

• Instead, we are interested in statistical relationships, in which the
relationships between the variables is not prefect.
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Regression Models

• Regression model describes the statistical relationship between the
response variable Y and one or more predictor variable(s)

• The response variable Y has a tendency to vary with the predictor
variable X in a systematic fashion.

• The (data) pairs are scattered around the regression curve.

• Regression model assumes a distribution for Y at each level of X .
• When the relationship between Y and X is linear, we call it linear
regression.

• In linear regression model, if it concerns study of only one predictor,
then we have simple linear regression model.

• In contrast, we have multiple linear regression.
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A simple linear regression

• It concerns about the statistical relationship between Y and a single
predictor X .

• The regression curve is a straight line.

The relationship is linear if it is linear in the model parameters (β0, β1) and
nonlinear, if it is not linear in parameters.



10/52

A simple linear regression

• A formal statistical model:

Yi = β0 + β1Xi + εi (1)

• Yi is the value of response variable in the i th observation (random but
observable).

• Xi is the predictor in the i th observation (a known constant).
• β0 is the intercept of the regression line (model parameter: assume
constant but unknown).

• β1 is the slope of the regression line (model parameter: assume
constant but unknown).

• εi is the error term (random and unobservable)
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A Simple Linear Regression: summary

R/C Known Unknown
Random Y ε
Constant X β0, β1, σ

2

• The parameters associated with a simple linear regression model are
β0, β1, σ

2.
• We need to find estimators for all three of them in order to make use

of the model.
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Example 1: hourly wage (Y) and years of education (X)

Variables
• Y: hourly wage(pound)
• X: years of education

Parameter interpretation
• β0: Y-intercept, the starting salary or the baseline salary
• β1: slope, the hourly wage increase per one more year of education
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Example 1: hourly wage (Y) and years of education (X)

EducYrs E(Y)=E(HWageT ) Y=HWageO

0 5 6.95
1 6 5.22
2 7 6.46
3 8 7.03
4 9 9.71
5 10 9.67
6 11 10.69
7 12 13.85
8 13 13.21
9 14 14.82

• EducYrs (X): years of education;
• HWageT (true E(Y)): the true expected hourly wage (in pounds).
• HWageO (observed Y): the observed hourly wage (in pounds)
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Example 1: hourly wage (Y) and education years (X)
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The observed Y goes up and down around the population regression line.
In real world, we don’t observed the true error term (ε), instead we have
data (EducYrs, HWageO). We aim to reveal the true relationship between
Y and X using the data we observed. That is, how to use observed data to
estimate β0, β1?
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True vs Estimated model
Assume we have a data set of size n : (Yi ,Xi ), i = 1, . . . , n.
True regression model (or population regression model)

Yi = β0 + β1Xi + εi = f (X ) + εi , f (X ) = β0 + β1Xi

Estimated regression model (or sample regression model)

Ŷi = b0 + b1Xi = f̂ (X ), f̂ (X ) = b0 + b1Xi

• Point estimators of β0, β1 are denoted by b0, b1 respectively.
• An estimate of Yi (for a given Xi) is denoted by Ŷi .
• An estimate of εi (for given Xi) is denoted by ei

ei = Yi − Ŷi = Yi − (b0 + b1Xi )

This implies that

Yi = Ŷi + ei = (b0 + b1Xi ) + ei



16/52

True vs Estimated model
• Difference between Ŷi = b0 + b1Xi and Yi = β0 + β1Xi + εi .
• Note that we never observed εi , but we could estimate it by ei .

Yi = Ŷi + ei = f̂ (X ) + estimated errori ,

where ei = Yi − Ŷi .
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Estimation by Least Squares method
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Gauss-Markov Assumptions

• Gauss-Markov Assumptions:
1. Dependent variable is linear in parameter and can be written as :

Y = β0 + β1X + ε
2. E(εi ) = 0. εi is R.V. with mean 0.
3. V (εi ) = σ2, this homoskedasticity implies that the model uncertainty

is identical across observations.
4. Cov(εi , εj ) = 0 for i 6= j. εi and εj are uncorrelated:

• X is assumed to be constant, ie, X is uncorrelated with the error term
(Cov(Xi , εi ) = 0).
• cov(εi , εj)=0 does not guarantee εi and εj are independent. But if

they are independent, their covariance must be 0.
• Above assumptions imply:

• E(Yi |Xi ) = µi = β0 + β1Xi , that is f (X) = β0 + β1X
• V (Yi |Xi ) = V (µi + εi ) = V (εi ) = σ2

• Cov(Yi ,Yj |Xi ) = E{(Yi − µi )(Yj − µj )} = E(εiεj ) = Cov(εi , εj ) = 0

We often drop |X notation in above because X is non-random.
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Least Square Method

• The equation of the estimated model (or best fitting line) is:
Ŷi = b0 + b1Xi

• We need to find the values b0, b1 that make the sum of the squared
prediction error the smallest it can be. That is, find b0 and b1 that
minimize the objective function Q.

Q =
n∑

i=1
e2

i =
n∑

i=1
(Yi − Ŷi )2 =

n∑
i=1

(Yi − b0 − b1Xi )2
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Least Square Estimates b0, b1
Q =

n∑
i=1

(Yi − Ŷi )2 =
n∑

i=1
(Yi − b0 − b1Xi )2

Minimizing Q gives

b0 = β̂0 = ȳ − b1x̄ (2)

b1 = β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2 = Sxy

Sxx
(3)

where

X̄ = 1
n

n∑
i=1

Xi , Ȳ = 1
n

n∑
i=1

Yi , Sxy =
n∑

i=1
(xi−x̄)(yi−ȳ),Sxx =

n∑
i=1

(xi−x̄)2

Substituting b0 in the estimated model, it can be rewritten as
Ŷi = b0 + b1Xi = Ȳ + b1(Xi − X̄ ),

this also implies
Yi = Ȳ + b1(Xi − X̄ ) + ei

i.e. The estimated regression line always goes through the point data
point (X̄ , Ȳ ).
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Proof

∂Q
∂b0

= −2
n∑

i=1
(Yi − b0 − b1Xi ) = 0 (4)

∂Q
∂b1

= −2
n∑

i=1
(Yi − b0 − b1Xi )Xi = 0 (5)

These lead to the Normal equations:
n∑

i=1
Yi = nbo + b1

n∑
i=1

Xi

n∑
i=1

XiYi = b0

n∑
i=1

Xi + b1

n∑
i=1

X 2
i

The normal equations can be solved simultaneously for b0 and b1 given in
equation (2) and (3) respectively.
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proof (not tested)

The Hessian matrix which is the matrix of second order partial derivatives
in this case is given as

H =
(

∂Q
∂β2

0

∂Q
∂β0β1

∂Q
∂β0β1

∂Q
∂β2

1

)
= 2

(
n nx̄

nx̄
∑

x2
i

)

• The 2 by 2 matrix H is positive definite if its determinant and the
element in the first row and column of H are positive.

• The determinant of H is given by |H| = 4n
∑

(xi − x̄)2 > 0 given
x 6= c(some constant).

• So H is positive definite for any (β0, β1), therefore Q has a global
minimum at (b0, b1).
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Equivalent formula for b1

b1 =
∑n

i=1(Xi − X̄ )(Yi − Ȳ )∑n
i=1(Xi − X̄ )2

= Sxy
Sxx

(6)

=
∑n

i=1(Xi − X̄ )Yi

Sxx
(7)

=
n∑

i=1

Xi − X̄
Sxx

yi =
n∑

i=1
kiYi (8)

=
∑n

i=1 XiYi − nX̄ Ȳ
Sxx

(9)

=
n∑

i=1
kiYi (10)

where
ki = Xi − X̄

Sxx
= Xi − X̄∑n

i=1(Xi − X̄ )2
,

suggesting that b1 is a linear combination of Yi (assume constant X) and
hence is a linear estimator.
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Equivalent formula for b0

b0 = Ȳ − b1X̄ =
n∑

i=1

1
nYi − X̄

n∑
i=1

kiYi

=
n∑

i=1
( 1n − ki X̄ )Yi

=
n∑

i=1
wiYi

where
wi = 1

n − ki X̄ ,

suggesting that b0 is also a linear combination of Yi and hence is a linear
estimator.
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Estimation of error terms variance σ2

• Error sum of squares (SSE) or residual sum of square (RSS)

SSE =
n∑

i=1
e2

i =
n∑

i=1
(Yi − Ŷi )2 =

n∑
i=1

(Yi − b0 − b1Xi )2

• SSE has n-2 degrees of freedom associated with it. Two degrees of
freedom are lost because both β0 and β1 had to be estimated in
obtaining estimated means Ŷi

• In LS method, the error term variance σ2 = V (εi ) for all i , is
estimated by the error mean square (MSE)

s2 = MSE = SSE
n − 2 =

∑n
i=1 e2

i
n − 2 = (Yi − Ŷi )2

n − 2
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Example 2: Estimation (by hand)

• Annual salary (Y) and years of service (X)

xi yi xi − x̄ yi − ȳ
(xi −
x̄)2

(yi −
ȳ)2

(xi −
x̄)(yi−

ȳ)
i=1 3 34 -5 -4 25 16 20
i=2 6 34 -2 -4 4 16 8
i=3 10 38 2 0 4 0 0
i=4 8 37 9 -1 0 1 0
i=5 13 47 5 9 25 81 45
Sum 40 190 0 0 58 114 73

Above calculation gives X̄ = 40/5 = 8 and Ȳ = 190/5 = 38.

b1 =
∑n

i=1(Xi − X̄ )(Yi − Ȳ )∑n
i=1(Xi − X̄ )2

= 73
58 = 1.258621

b0 = Ȳ − b1X̄ = 38− 1.258621× 8 = 27.931



27/52

Example 2: Estimation (by hand)

• Find Ŷi = 27.931 + 1.25862Xi

• Ŷi = c(31.70686, 35.48272, 40.51720, 37.99996, 44.29306)

• Find ei = Yi − Ŷi

• ei = c(2.29314,−1.48272,−2.51720,−0.99996, 2.70694)

• Estimate σ2 by MSE: s2 = σ̂2 =
∑

e2
i /(n − 2) = 7.373563

• σ̂ =
√
7.373563 = 2.715431
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Inference on model parameters β1 and β0
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Motivations

• Recall the assumptions:
1. Dependent variable is linear in parameter and can be written as :

Y = β0 + β1X + ε
2. E(εi ) = 0. εi is R.V. with mean 0.
3. V (εi ) = σ2, this homoskedasticity implies that the model uncertainty

is identical across observations.
4. Cov(εi , εj ) = 0 for i 6= j. εi and εj are uncorrelated:

• In other words, the least squares estimators hold no matter what the
distribution of epsilon.

• However, if we want to make inference on β0 or β1, we need to make
distributional assumptions.
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Normal error regression models

Similar to the previous model, the true regression model (or population
regression model)

Yi = β0 + β1Xi + εi = f (X ) + εi , f (X ) = β0 + β1Xi

The only difference is that for i = 1, . . . , n:

εi ∼ N (0, σ2)

In other words,
• The errors are IID normal with mean 0 and unknown variance σ2

• Yi ∼ N (β0 + β1Xi , σ
2) are independent.
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Extended to multiple predictors (multiple input variables)

• the output is an outcome variable Y
• the inputs are the predictor variables X1, . . . ,Xp

• the relationship is described by a linear regression model of the form

E(Y |X1, . . . ,Xp) = β0 + β1X1 + · · ·+ βpXp

and a model on Y |X1, . . . ,Xp or the distribution of Y can be described by

Y ∼ β0 + β1X1 + · · ·+ βpXp + ε

where ε ∼ N (0, σ2).



32/52

Normal error regression models

This formulation enables
• estimation of β0, β1 and σ2 through maximum likelihood method

and
• inference on these parameters via a known sampling distribution
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Maximum Likelihood Estimation for Regression

• Similarly, we find the values of parameters θ = (β0, β1, σ
2) in the

normal error model that maximize the relevant likelihood function.

• Yi ∼ N(β0 + β1Xi , σ
2), the density function at yi is

f (yi ;β0, β1, σ
2) = 1√

2πσ2
exp{− (yi − β0 − β1xi )2

2σ2 }
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MLE for Regression

• Likelihood function

L(β0, β1, σ
2) =

n∏
i=1

f (yi ; θ) = { 1
2πσ2 }

n/2 exp{−
∑n

i=1(yi − β0 − β1xi )2

2σ2 }

• Log likelihood function

`(β0, β1, σ
2) = −n

2 log(2πσ2)−
∑n

i=1(yi − β0 − β1xi )2

2σ2

Partial differentiation of `(β0, β1, σ
2) yields

∂`(β0, β1, σ
2)

∂β0
= 1
σ2

∑
(yi − β0 − β1xi ) (11)

∂`(β0, β1, σ
2)

∂β1
= 1
σ2

∑
xi (yi − β0 − β1xi ) (12)

∂`(β0, β1, σ
2)

∂σ2 = − n
2σ2 + 1

2σ4

∑
(yi − β0 − β1xi )2 (13)



35/52

MLE vs LSE for Regression

Set partial derivatives equal to zero and solve them to obtain the MLE of
β0, β1, σ

2.

Parameters MLE Same as LSE?

β0 β̂0 = Ȳ − β̂1X̄ Same. β̂0 = b0

β1 β̂1 =
∑n

i=1
(xi −x̄)(yi −ȳ)∑n
i=1

(xi −x̄)2 Same. β̂1 = b1

σ2 σ̂2 =
∑n

i=1
(yi −β̂0−β̂1xi )2

n Different. σ̂2 = n−2
n MSE

Note that the MLE of σ2 is a biased estimator of the error term variance.
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Inference on β0 and β1

• We knew how to point estimate of β0, β1 in simple linear regression
from data.

• Using Ordinary Least Squares (OLS)
• maximum likelihood estimators (MLE).

• Now we take up the inferences concerning the regression parameters
β0, β1

• How accurate are their estimates?
• How to obtain an interval estimate for each of them?
• How to test a specific parameter value of interest?
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Sampling distribution of b1

• From earlier, we know (no need to show)
• b1 = SXY

SXX
=
∑n

i=1 ki Yi , so b1 is normally distributed.
• b1 is unbiased E(b1) = β1, σ

2(b1) = V (b1) = σ2

SXX

• σ̂2=MSE=SSE/(n-2), so s2(b1) = MSE/SXX ,
√

s2(b1) = s(b1)

• (Common) Sampling distribution of b1 following normal error model
assumption when σ2 is unknown:

b1 − β1
s(b1) ∼ tn−2

• (Not common) Sampling distribution of b1 following normal error
model assumption when σ2 is known: b1−β1

σ(b1) ∼ N(0, 1)
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Inferences concerning β1

• 1− α confidence limits for β1 are

b1 ± t1−α/2,n−2s(b1) = b1 ± t1−α/2,n−2s(b1)

• Testing concerning β1

H0 : β1 = 0 Ha : β1 6= 0

Note that when β1 = 0, there is no linear association between Y and
X .

• Test statistics
t∗ = b1 − 0

s(b1) |H0 ∼ tn−2

• If |t∗| ≤ t1−α/2,n−2, fail to reject H0.
• If |t∗| > t1−α/2,n−2, reject H0.
• Or find relevant p-value, and we reject H0 if p-value is less than α.
• If we change Ha : β > 0 then we reject H0 if t∗ > t1−α,n−2 otherwise
we fail to reject null hypothesis.
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Sampling distribution of b0

• From earlier, we know (no need to show)
• b0 = Ȳ − b1X̄ =

∑n
i=1 wi Yi , so the b0 is normally distributed.

• b0 is unbiased. E(b0) = β0, σ
2(b0) = V (b0) = σ2{ 1

n + X̄2

SXX
}

• s2(b0) = MSE{ 1
n + X̄2

SXX
}

• (Common) Sampling distribution of b0 Normal error model
assumption when σ2 is unknown:

b0 − β0
s(b0) ∼ tn−2

• (Not Common) Sampling distribution of b0 Normal error model
assumption when σ2 is known:

b0 − β0
σ(b0) ∼ N(0, 1)
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Inferences concerning β0

There are only infrequent occasions when we wish to make inferences
concerning β0. We do inferences concerning β0 only when the scope of the
model includes X = 0.
• 1− α confidence limits for β0 are

b0 ± t1−α/2,n−2s(b0) = b0 ± t1−α/2,n−2s(b0)

• Testing concerning β0 is less interest.
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Summarizing and interpreting a linear regression
model
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Key information from a simple linear regression model

• Test whether the slope is zero (establishing the presence linear
relationship)

• significance is the presence or absence of a linear relationship
• intepretation is the amount of per unit increase/decrease in Y due to
a per unit increase in X

• Calculate the coefficient of determination (assess the strength of the
linear relationship)

• intepretation is the amount of variability in Y that is explained by X
• for a simple linear regression the pearson’s correlation coefficient is
exactly the same as the coefficient of determination

• The intercept provides a baseline for discussion.
• the intepretation is the baseline value of Y when X = 0 (this might
not make sense in certain applications when range of X does not
contain 0).



43/52

Example 2. Annual Salary (Y) vs years of service (X)

X=c(3,6,10,8,13) # assign predictor observations to object X
Y=c(34,34,38,37,47) # assign response observations to object Y
lmfit = lm(Y~X) # fitting data with a simple linear regression
summary(lmfit) # summary of the fitted model

##
## Call:
## lm(formula = Y ~ X)
##
## Residuals:
## 1 2 3 4 5
## 2.293 -1.483 -2.517 -1.000 2.707
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 27.9310 3.1002 9.01 0.00289 **
## X 1.2586 0.3566 3.53 0.03864 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.715 on 3 degrees of freedom
## Multiple R-squared: 0.806, Adjusted R-squared: 0.7413
## F-statistic: 12.46 on 1 and 3 DF, p-value: 0.03864
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(Pearson’s) Coefficient of Correlation

• r is the basic quantity in correlation analysis

r =
∑

(Xi − X̄ )(Yi − Ȳ )√
[
∑

(Xi − X̄ )2][
∑

(Yi − Ȳ )2]
= SXY√

SXX SYY

• r takes values in [-1,1], the ± signs are used for positive and negative
linear correlations, respectively.

• r measures strength & direction of linear relationship
• Value of -1 or +1 indicates a perfect positive or negative correlation,
all data points all lie exactly on a straight line

• Value of 0.0 indicates no linear correlation
• Positive values indicate a direct relationship, X and Y move in the
same directions.

• Negative values indicate an inverse relationship, X and Y move in
opposite directions.

• Note that r is a dimensionless quantity; that is, it does not depend on
the units employed.
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Interpretation of Pearson’s correlation coefficient

• 0.2 ≤ |r | ≤ 0.4: weak correlation.
• 0.4 < |r | ≤ 0.6: moderate correlation.
• 0.6 < |r | ≤ 0.8: strong correlation.
• |r | > 0.8: very strong correlation.
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Coefficient of Determination

R2 =
∑n

i=1(Ŷi − Ȳ )2∑n
i=1(Yi − Ȳ )2

= SSR
SSTO = 1− SSE

SSTO

• The measure R2 is called the coefficient of determination.
• R2 is a proportion. Since 0 ≤ SSE ≤ SSTO, it follows that

0 ≤ R2 ≤ 1
• R2 measures strength of linear relationship.

• R2 = 1, all data points fall perfectly on the regression line and X
accounts for all of the variation in Y.

• R2 = 0, the estimated regression line is pefectly horizontal. X
accounts none of the variation in Y.

• Interpretation of R2:
• “R2× 100 percent of the variation in Y is reduced by taking into
account predictor X”

• “R2× 100 percent of the variation in Y is ‘explained by’ the variation
in predictor X”
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Exercise: show R2 = r 2 under a simple linear regression
model.

Hints:

R2 =
∑n

i=1(b0 + b1Xi − Ȳ )2∑n
i=1(Yi − Ȳ )2

rX ,Y = Σ(Xi − X̄ )(Yi − Ȳ )√∑n
i=1(Xi − X̄ )2∑n

i=1(Yi − Ȳ )2

where

SYY = SSTO =
n∑

i=1
(Yi − Ȳ )2

SXX =
n∑

i=1
(Xi − X̄ )2
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From R2 to get r

r = ±
√

R2 = sign(b1)
√

R2

• If b1 is negative, then r takes a negative sign.
• If b1 is positive, then r takes a positive sign.

r = b1

√
SXX
SYY

• The estimated slope b1 of the regression line and the correlation
coefficient r always share the same sign.

• If the estimated slope b1 of the regression line is 0, then the
correlation coefficient r must also be 0.
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Limitations of R2

• R2 is frequently used for assessing and comparing model fits, but
• A high R2 does not necessarily imply that you can make useful
predictions.

• A high R2 does not necessarily imply that the estimated line is a good
fit.

• A low R2 does not necessarily imply that X and Y are not related or
independent.

• R2 measures degree of linear association but does not measure the
evidence of a linear relationship between X and Y.

• R2 usually can be made larger by including a larger number of
predictors.( More predictors, MSE goes down,SSTO remains
unchanged, so R2 goes up)

• Adjusted R2, R2
a (p=number of predictors in the model+1, +1 for β0)

R2
a = 1− SSE/(n − p)

SSTO/(n − 1) = 1− n − 1
n − p

SSE
SSTO = 1− (n − 1) MSE

SSTO

R2
a = 1− (1− R2)(n − 1)

n − p
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Interpretation of R2

• R2 measures degree of linear association between X and Y.
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Interpretation of R2

• R2 measures only a relative reduction from SSTO.
• R2 might be large but MSE may still be too large for inference to be
useful in prediction.

• R2 might be small but MSE may still be small which is useful in
prediction
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Interpretation of R2

• R2 measures degree of linear association.
• R2 might be large or small if the true regression association between
X and Y is curvilinear.


